
SimpleElastix Documentation
Release 0.1

Kasper Marstal

Dec 14, 2018

Contents

1 Getting Started 3
1.1 Compiling On Linux . 3
1.2 Compiling On Mac OS X . 4
1.3 Compiling On Windows . 4
1.4 Manually Building On Linux . 9
1.5 Troubleshooting . 10
1.6 Contribute . 12

2 Introduction 13
2.1 Image Registration . 13
2.2 SimpleElastix . 13
2.3 Mathematical Background . 14
2.4 Registration Components . 15

3 Hello World 19
3.1 Registration With Translation Transform . 19
3.2 Object-Oriented Interface . 21

4 Parameter Maps 23
4.1 The Default Parameter Maps . 24
4.2 Important Parameters . 25

5 Rigid Registration 27

6 Affine Registration 31

7 Non-rigid Registration 35

8 Groupwise Registration 39

9 Point-based Registation 43
9.1 Transforming Point Sets . 44

10 Acknowledgements 45

i

ii

SimpleElastix Documentation, Release 0.1

SimpleElastix is a medical image registration library that makes state-of-the-art image registration really easy to do in
languages like Python, Java and R. For example, using the following line of code (Python),

import SimpleITK as sitk
resultImage = sitk.Elastix(sitk.ReadImage("fixedImage.nii"), sitk.ReadImage(
→˓"movingImage.nii"))

we can register two human brain images:

Figure 1. Original mean image of two different subjects (left) and registered mean image (right) using the
line of code above. Purple areas indicate good alignment and blue and red areas indicate misalignment.

The Getting Started section explains how to clone the Github repository and compile SimpleElastix on Linux, Mac OS
X and Windows. The subsequent sections present how to use elastix, and gradually introduce more advanced features
and use cases. If you have not used elastix or transformix before, we highly recommend that you familiarize yourself
with the Introduction, Hello World example and Parameter Maps sections before working through the examples.

Contents 1

https://github.com/kaspermarstal/SimpleElastix

SimpleElastix Documentation, Release 0.1

2 Contents

CHAPTER 1

Getting Started

This page explains how to install SimpleElastix. The process involves compiling the C++ project and linking against
a target language from which you would like to use SimpleElastix. SimpleElastix can be linked against Python, Java,
R, Ruby, Lua, Tcl and C#.

1.1 Compiling On Linux

SimpleElastix includes a script that automatically downloads and installs all dependencies. This is called a ‘Super-
Build’ in CMake terms. We only need CMake, git, and a compiler toolchain to compile the SuperBuild. Once these
have been installed (e.g. sudo apt install cmake git build-essential), we use the following com-
mands to download the code and start the build:

$ git clone https://github.com/SuperElastix/SimpleElastix
$ mkdir build
$ cd build
$ cmake ../SimpleElastix/SuperBuild
$ make -j4

Warning: Be careful not to run out of memory during the build. A rule of thumb is that we need 4GB of memory
per core. For example, if we compile SimpleElastix with 4 cores (e.g. make -j4) we need a machine with at
least 16GB of RAM. The full project takes around an hour to compile on a quad-core machine.

SimpleElastix will be compiled for languages that it can automatically detect. Target language dependencies need to
be installed before you start compile the SuperBuild. The relevant apt packages are

python python-dev monodevelop r-base r-base-dev ruby ruby-dev tcl tcl-dev tk tk-dev

The language packages will be built in the ${BUILD_DIRECTORY}/SimpleITK-build/Wrapping directory.
We then have to run language-specific install scripts.

Follow the steps below to install SimpleElastix when compilation has finished.

3

SimpleElastix Documentation, Release 0.1

Python

To install the python module onto your system, navigate to

${BUILD_DIRECTORY}/SimpleITK-build/Wrapping/Python

and run the following command:

$ sudo python Packaging/setup.py install

This will install the SimpleElastix which we can then import into our own scripts. If we want to install SimpleElastix
into a virtual environment, activate the virtual environment on beforehand and omit sudo. If you don’t know what a
virtual environment is, don’t worry about it, it is entirely optional.

Java TODO: Pull request welcome.

R TODO: Pull request welcome.

C# TODO: Pull request welcome.

C++ TODO: Pull request welcome.

Ruby TODO: Pull request welcome.

Lua TODO: Pull request welcome.

1.2 Compiling On Mac OS X

The Mac OS X compilation procedure is identical to that of Linux, so simply follow the Linux installation steps above
to compile SimpleElastix. We need to have CMake git and a compiler installed. We can check for a working compiler
by opening the OS X terminal and run make. OS X will know if the Xcode Command Line Tools is missing and
prompt you to install them if this is the case.

Mac OS X comes with Python and Tcl preinstalled but other target-language dependencies need to be installed seper-
ately. This can be done with Macports or Homebrew.

Java TODO: Pull request welcome.

R TODO: Pull request welcome.

C# TODO: Pull request welcome.

C++ TODO: Pull request welcome.

Ruby TODO: Pull request welcome.

Lua TODO: Pull request welcome.

1.3 Compiling On Windows

SimpleElastix includes a script that automatically downloads and install all dependencies. This is called a ‘SuperBuild’
in CMake terms. The only things needed to compile the SuperBuild is CMake, git and a compiler toolchain. Here, we
use the compiler that comes the free Visual Studio Community 2017 package.

4 Chapter 1. Getting Started

https://www.macports.org/
http://http://brew.sh/
https://www.visualstudio.com/downloads/

SimpleElastix Documentation, Release 0.1

1.3.1 Using Visual Studio

We will use CMake to generate build files and the Visual Studio compiler to compile the project.

1. Download CMake, git and code, and setup directories.

• Download and install CMake GUI.

• git clone https://github.com/kaspermarstal/SimpleElastix into a source
folder of your choice.

• Point the CMake source directory to the SimpleElastix/SuperBuild folder inside the source
directory.

• Point the CMake build directory to a clean directory. Note that Visual Studio may complain during
the build if the path is longer than 50 characters. Make a build directory with a short name at the root
of your harddrive to avoid any issues.

Fig. 1: Figure 3: Configure CMake.

2. Select compiler.

1.3. Compiling On Windows 5

http://www.cmake.org/download/

SimpleElastix Documentation, Release 0.1

• Press configure to bring up the compiler selection window.

• Check whether our target languages are installed as 32-bit or 64-bit. For example, if our Python
installation is 64-bit, we will need to build the 64-bit version of SimpleElastix to link it. If at all
possible, we choose the 64-bit version since the build may run out of memory on 32-bit platforms.

• Choose a compiler and click next. CMake will find the selected compiler for us if we leave the “Use
default native compiler” option checked.

Tip:

• If you need a compiler other than the default system option, select “Specify native compilers”. Leave
the “Use default native compiler” option checked if you don’t know what this means.

• If CMake complains that a compiler cannot be found, install the free Visual Studio Community Edition
.

• If CMake does not pick up our target language, check that it has been installed with develop-
ment libraries, and check if the paths have been set. For example, to manually configure CMake
Python paths, tick “Advanced” and specify PYTHON_EXECUTABLE, PYTHON_INCLUDE_DIR and
PYTHON_LIBRARY. See Troubleshooting section for details.

Fig. 2: Figure 4: Select compiler.

6 Chapter 1. Getting Started

https://www.visualstudio.com/

SimpleElastix Documentation, Release 0.1

• Press generate.

3. If you are comfortable with the commandline, this is by far the easiest and least error-prone way of compiling the project. Otherwise skip to steps 4 and 5 that uses Visual Studio .

• Open x64 native tools command prompt. On Windows 10, open the stat menu and click on “All
Apps”. Find the Visual Studio folder (e.g. “Microsoft Visual Studio 2012”), open it, and click on
“Open VS2012 x64 Native Tools Command Prompt.”‘w

• Navigate to the build folder specified in CMake.

• Run msbuild ALL_BUILD.vcxproj /p:Configuration=Release.

• Done. Ignore steps 4 and 5.

4. Open Visual Studio, select File -> Open Project/Solution -> Open and choose SuperBuildSimpleITK
solution.

Fig. 3: Figure 5: Open the solution in Visual Studio.

5. Make sure “Release” build type is selected and build the ALL_BUILD project. If the “Debug” build type is used
instead of “Release” mode, you will experience a significant performance penalty and may not be able to build
language packages that are distributed without development binaries.

Python

To install the python module onto your system, navigate to

${BUILD_DIRECTORY}/SimpleITK-build/Wrapping/Python/Packaging

and run the following command:

1.3. Compiling On Windows 7

SimpleElastix Documentation, Release 0.1

Fig. 4: Figure 6: Right-click on ALL_BUILD and click Build.

$ sudo python setup.py install

This will install the SimpleITK python module with SimpleElastix, which can then be imported into scripts like any
other python module. If you want to install SimpleElastix into a virtual environment, activate the virtual environment
on beforehand and omit sudo. If you don’t know what a virtual environment is, don’t worry about it, it is entirely
optional.

Java TODO: Pull request welcome.

R TODO: Pull request welcome.

C# TODO: Pull request welcome.

C++ TODO: Pull request welcome.

Ruby TODO: Pull request welcome.

Lua TODO: Pull request welcome.

1.3.2 Using the command line

SimpleElastix can also be compiled via the Windows shell. You will use CMake to generate build files and the
msbuild.exe program to compile the project.

1. Download CMake, git and code, and setup directories.

• Download and install CMake GUI. Be sure to select Add CMake to the system PATH option.

• git clone https://github.com/kaspermarstal/SimpleElastix into a source
folder of your choice. You can install GitHub Desktop and use the accompanying command line
tool with git automatically added to its path.

8 Chapter 1. Getting Started

http://www.cmake.org/download/
https://desktop.github.com/

SimpleElastix Documentation, Release 0.1

• Make a new directory named build and cd into it by typing cd build. Here we will assume that the
build directory and the source directory is in the same folder.

2. Compile the project.

• Open “Developer Command Prompt for VS2015” (or equivalent depending on your version of Visual
Studio)

• Run cmake ../SimpleElastix/SuperBuild.

• Run msbuild /p:configuration=release ALL_BUILD.vcxproj.

3. Enable x64 bit build (Optional).

• Prior to running the cmake command in step 2, navigate to C:/Program Files (x86)/Microsoft Visual
Studio 14.0/VC> (or equivalent depending on your version of Visual Studio) and vcvarsall amd64.

1.4 Manually Building On Linux

The following approach allows us to use a locally installed version of ITK and/or elastix.

1. Setup the prerequisites

• sudo apt-get install cmake swig monodevelop r-base r-base-dev ruby python python-dev tcl tcl-dev tk
tk-dev.

2. Install SWIG >= 3.0.5

3. Install ITK. Configure CMake using the same approach as above.

• Clone ITK from github.com/InsightSoftwareConsortium/ITK.

• Configure CMake. Set the following CMake variables: BUILD_SHARED_LIBS=OFF, Mod-
ule_ITKReview=ON, ITK_WRAP_*=OFF.

• Compile ITK. Make sure to note the build settings, e.g. Release x64.

4. Build elastix.

• Clone elastix from github.com/SuperElastix/elastix.

• Set ITK_DIR to the location of the ITK build directory

• Configure CMake. Set the CMake variable BUILD_EXECUTABLE to OFF.

• Set appropriate ELASTIX_IMAGE_2/3/4D_PIXELTYPES and any components that you might re-
quire.

• If you are developing your own elastix components, make sure they are properly registered by the
elastix build system.

• Compile elastix. Make sure to configure the build settings exactly the same as ITK e.g. Release x64.

5. Build SimpleElastix.

• Clone SimpleElastix from github.com/SuperElastix/SimpleElastix.

• Configure CMake. Point ITK_DIR to the location of the ITK build directory and ELASTIX_DIR to
the location of the elastix build directory, specifically the src/ directory in it.

• Build SimpleElastix. Make sure to configure the build settings exactly the same as ITK and Elastix,
e.g. Release x64.

1.4. Manually Building On Linux 9

https://github.com/InsightSoftwareConsortium/ITK
https://github.com/SuperElastix/elastix
https://github.com/SuperElastix/SimpleElastix

SimpleElastix Documentation, Release 0.1

1.5 Troubleshooting

1.5.1 I have installed a target language but CMake cannot find it

The language package may be configured incorrectly or the necessary folders may not have been added to your $PATH
environment variable during installation. Two solutions are available.

• Solution 1: Add the necessary folders to your $PATH environment variable.

– Linux and Mac OS X: Add export PATH=${PATH}:/path/to/folder to your $HOME/.
bash_profile (or $HOME/.profile depending on your system) and restart the terminal.

– Windows: Go to Control Panel -> System -> Advanced tab -> Environment Variables and add the
target language installation directory to the PATH variable.

• Solution 2: Set the paths manually in CMake (quick and dirty fix). For example, specify PYTHON_EXECUTABLE, PYTHON_INCLUDE_DIR and PYTHON_LIBRARY if you wish to build the python package.

– Linux and Mac OS X: Run $ ccmake . in the build directory and press t on your keyboard to see
these options.

– Windows: Tick “Advanced” in the CMake GUI to see these options.

– You will have to repeat this procedure every time you setup a new build of SimpleElastix, so we
recommend that you configure your $PATH environment variable as described in solution 1 above.

If you are still experiencing problems at this point, re-install the language package or consult Google or Stack Overflow.

1.5.2 Visual Studio throws LNK1102 out of memory error even though I selected
the 64-bit compiler

While Visual Studio targets 64-bit platforms when we select a 64-bit compiler, the Visual Studio toolchain itself will
be 32-bit by default. We may therefore experience an out-of-memory error even though you compile a 64-bit vesion
of elastix, especially during the linking stage. There are (at least) two ways we can try switch to a 64-bit toolchain
(“try” because these methods work, someimes they don’t).

• Solution 1: Set the environment variable _IsNativeEnvironment=true in command prompt,
then call the Visual Studio executable from command line. For example, in the case of VS2013:

start "c:\Program Files (x86)\Microsoft Visual Studio 12.
→˓0\Common7\IDE\devenv.exe" c:\SimpleElastix\build\SimpleITK-build\SimpleITK.
→˓sln

• Solution 2: In Visual Studio, edit your .vcxproj file and insert the following after the <Import...
Microsoft.Cpp.Defaults> line:

<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup>

<PreferredToolArchitecture>x64</PreferredToolArchitecture>
</PropertyGroup>

1.5.3 The SuperBuild throws Server SSL certificate verification
failed: certificate has expired during checkout of elastix

• Solution 1: We run svn info https://svn.bigr.nl/elastix/trunkpublic/ in out terminal.
It will then prompt us to “(R)eject, accept (t)emporarily or accept (p)ermanently?” the certificate. Hit ‘p’ and

10 Chapter 1. Getting Started

SimpleElastix Documentation, Release 0.1

then enter. It may then ask us for our SVN username, which is elastixguest, and password, which is also
elastixguest. Then we restart the build. You may have to change permissions recusively in ~/.subver-
sion/auth. This is done by doing “chmod -R 777 ~/.subversion/auth”. If all else fails, our last port of call will be
to delete ~/.subversion/auth/svn.ssl.server and then carry out the steps in Solution 1. The commands noted here
are linux-specific.

1.5.4 PCRE (Perl Compatible Regular Expression) build fails on Mac OS X

On recent versions of Mac OS X you may experience the following error when using the SuperBuild:

Performing build step for 'PCRE'
make[3]: *** No targets specified and no makefile found. Stop.
make[2]: *** [PCRE-prefix/src/PCRE-stamp/PCRE-build] Error 2
make[1]: *** [CMakeFiles/PCRE.dir/all] Error 2
make: *** [all] Error 2

This happens during the SWIG build. We can work around this issue by forcing CMake to use clang. Add the following
flags to the CMake configure command and run it in a clean directory:

cmake -DCMAKE_CXX_COMPILER:STRING=/usr/bin/clang++ -DCMAKE_C_COMPILER:STRING=/usr/bin/
→˓clang path/to/SimpleElastix/SuperBuild

1.5.5 Ruby build fails on Mac OS X

The Ruby virtual machine cannot accomodate spaces in paths. If you see a path that contains spaces like
/Applications/Apple Dev Tools/Xcode.app/Contents/Developer, re-install Xcode Command
Line Tools to a place with no spaces in the path.

1.5.6 I get compilation errors like elastixlib.h' and 'transformixlib.h'
file not found

This error may stem from a space in the path of the build directory. For example, if we are building SimplElastix in
/Users/kasper/folder name/build we should rename it to /Users/kasper/folder_name/build
or similar.

1.5.7 SimpleElastix takes a long time to build!

The full build take 2+ hours to build on a standard machine. We can speed up compilation by deselecting Examples,
Testing and any wrapped languages we don’t need. Other than that there is not much we can do. SimpleITK has to
compile all filters (including elastix) for all pixel types in order to support runtime selection of the correct template
parameters.

1.5.8 I am unable to assign a parameter to a parameter map in a parameter map list

This is a known issue which is possibly related to the SWIG-generated code. If you have a solution please make a pull
request!

1.5. Troubleshooting 11

SimpleElastix Documentation, Release 0.1

1.6 Contribute

If you are experiencing a problem that is not describes on this page, you are very welcome to open an issue on Github
and we will do our best to help you out. Likewise, if you have found a solution to a problem that is not described on
this page, we hope you will open a pull request on Github and help fix the problem for everyone.

12 Chapter 1. Getting Started

CHAPTER 2

Introduction

If you are completely new to SimpleElastix, or even medical image registration in general, you might not know where
to start or what questions to ask. This section will walk you through the basics.

2.1 Image Registration

Image registration is the process of transforming images into a common coordinate system so corresponding pixels
represent homologous biological points. For example, registration can be used to obtain an anatomically normalized
reference frame in which brain regions from different patients can be compared. Computer scientists and medical
doctors use this information to build computational models of disease processes.

In the past decade there has been increasing interest in relating information in different medical images spurred by
a growing availability of scanners, modalities and computing power. Clinical applications include segmentation of
anatomical structures, computer-aided diagnosis, monitoring of disease progression, surgical intervention and treat-
ment planning.

A significant amount of research has focused on developing the registration algorithms themselves. However, less
research has focused on accessibility, interoperability and extensibility of these algorithms. Scientific source code
is typically not published, is difficult to use because it has not been written with other researchers in mind or is
lacking documentation. This is a problem since image registration is a prerequisite for a wide range of medical image
analysis tasks and a key algorithmic component for image-based studies. Open source, user-friendly implementations
of scientific software make state-of-the-art methods accessible to a wider audience, promote opportunities for scientific
advancement, and support the fundamental scientific principle of reproducibility. To this end, we have developed the
SimpleElastix software package.

2.2 SimpleElastix

Elastix cite{Klein2010} is an open source, command-line program for intensity-based registration of medical images
that allows the user to quickly configure, test, and compare different registration methods. SimpleElastix is an ex-
tension of SimpleITK cite{Lowekamp2013} that allows you to configure and run Elastix entirely in Python, Java,
R, Octave, Ruby, Lua, Tcl and C# on Linux, Mac and Windows. The goal is to bring robust registration algorithms

13

SimpleElastix Documentation, Release 0.1

to a wider audience and make it easier to use elastix, e.g. for Java-based enterprise applications or rapid Python
prototyping.

A lot of research has focused on making SimpleElastix computationally efficient and easy to use. Stochastic sampling
(Klein et al. 2007), multi-threading and code optimizations (Shamonin et al 2014) makes registration run fast without
sacrificing robustness. A simple parameter interface and modular architecture allows you to configure registration
components at runtime and easily try out different registration methods.

Previously, performing these kinds of operations on large datasets would incur a significant workflow overhead from
scripting command line invocations and arguments to copying images and transform parameter files across folders.
With SimpleElastix and SimpleTransformix this complexity is easier to manage and more memory and disk I/O effi-
cient.

2.3 Mathematical Background

The registration concept is schematically depicted in Figure 1. A standard image registration procedure involves two
input images: One is defined as the fixed image 𝐼𝐹 (𝑥) and the other as moving image 𝐼𝑀 (𝑥). 𝑥 denotes the 𝑑-
dimensional position in the image. If you are registering images taken with your iPhone, 𝑑 = 2 and 𝑥 will have two
components, one for each dimension of the 2D plane. If you are registering body parts taken with a CT scanner, 𝑑 = 3
and 𝑥 will have three components, one for each of spatial dimension. You may also encounter time series which are
four-dimensional (3D+time).

A transform 𝑇 (𝑥) represents the spatial mapping of points from the fixed image 𝑝 to points in the moving im-
age 𝑞. This establishes a correspondence for every pixel in the fixed image to a position in the moving image.

Fig. 1: Figure 2: Image registration is the act of deforming
moving image points 𝑝 to biologically corresponding points
𝑞 in the fixed image domain.

A similarity metric provides a measure of how well the
fixed image matches the moving image. This measure
forms a quantitative criterion to be optimized by an op-
timizer over the search space defined by the parameters
of the transform. In general, the registration procedure
is formulated as an optimization problem in which a cost
function 𝐶 is minimized with respect to 𝑇 . Mathemat-
ically, 𝐼𝑀 (𝑥) is deformed to match 𝐼𝐹 (𝑥) by finding a
coordinate transformation 𝑇 (𝑥) that makes 𝐼𝑀 (𝑇 (𝑥))
spatially aligned with 𝐼𝐹 (𝑥). This simply means that
the optimizer adjusts the parameters of the transform in
a way that minimizes the difference between the two images.

The metric is a key component in the registration process. It uses information from the fixed and moving image to
compute a similarity value. The derivative of this value tells us in which direction we should move the moving image
for better alignment. The moving image is moved in small steps, and thes process is repeated until a convergence
criteria is met. The metric can use pixel intensities, point positions, pre-computed image features or anything we
might want to optimize. We just have to define a metric for it.

Sometimes a regularisation term is added to the cost function to penalize unwanted transformations. For example, if
we expect your transform to be reasonably smooth, we can penalize sharp deformations. Further, a multi-resolution
approach is typically adopted where we start with a high level of smoothing and gradually sharpen the images. This
increases the capture range and makes registration much less prone to local minima.

Many different transforms, metrics and optimizers are available in SimpleElastix. In theory, the combinatorial number
of choices of registration components can be daunting. In practice, you will develop an intuition about which algo-
rithms are better suited to different types of problems. Choosing the right method for a particular problem will always
be a trial-and-error process even for experts, but with the right tools you can focus more on the problem and less on
implementation.

14 Chapter 2. Introduction

SimpleElastix Documentation, Release 0.1

2.4 Registration Components

In this section we introduce common terminology and some of the choices for different types of components. For a
technical discussion and equations see the elastix manual. For documentation of source code see the elastix doxygen
pages where you will also find a complete list of available parameters.

2.4.1 Image Pyramids

A multi-resolution pyramid strategy improves the capture range and robustness of the registration. There are three
types of pyramids available in elastix: SmoothingImagePyramid, RecursiveImagePyramid and ShrinkingImagePyra-
mid. The FixedImagePyramid and the MovingImagePyramid have identical options. The SmoothingImagePyramid
smoothes the images with a Gaussian kernel at different scales. The RecursiveImagePyramid smoothes and down-
samples the image. The ShrinkingImagePyramid merely downsamples the image. In general, you should be using
the SmoothingImagePyramid together with a random sampler, since it will not throw away valuable information and
a few thousead samples is often sufficient for a good approximation to the true gradient. It may consume quite some
memory for large images and many resolution levels, however.

Two parameters have to be set to define the multi-resolution strategy: NumberOfResolutions and
ImagePyramidSchedule. The pyramid schedule defines the amount of blurring and/or down-sampling in each
direction x, y, z and for each resolution level. If you only set the NumberOfResolutions, a default schedule will
be used that smoothes the fixed image by a factor of 2 in each dimension, starting from 𝜎 = 0.5 in the highest resolu-
tion. This schedule is usually fine. If you have highly anisotropic data, you might want to blur less in the direction of
the largest spacing.

In general, 3 resolutions are sufficient. If the fixed and moving image are initially far away, you can increase the
number of resolution levels to, say, 5 or 6. This way more attention is paid to register large, dominant structures in the
beginning. The resolution schedule is specified as follows:

(NumberOfResolutions 4)
(FixedImagePyramidSchedule 8 8 8 4 4 4 2 2 2 1 1 1)

In this example, 4 resolutions are used for a 3D image. At resolution level 0 the image is blurred with 𝜎 = 8/2 voxels
in each direction (𝜎 is half the pyramid schedule value). At level 1 𝜎 = 4/2 is used, and finally at level 4 the original
images are used for registration.

SimpleElastix can automatically configure these options for you if you use the default parameter maps.

2.4.2 Masks

You may encounter problems where you are more interested in aligning substructures than global anatomy. For
example, 4D CT images of lungs vary considerably due to breating motion and you may not want to align the more
static rib cage at the expense of lung overlap. One possibility is to crop the image, but this approach restricts the
Region Of Interest (ROI) to be a square (2D) or cube (3D) only. If you need an irregular shaped ROI, you can use
masks. A mask is a binary image filled with 0’s and 1’s. Intensity values are only sampled within regions filled with
1’s.

You should use a mask when:

• Your image contains an artificial edge that has no real meaning. The registration might be tempted to align
these artificial edges, thereby neglecting the meaningful edges. The conic beam edge in ultrasound images is an
example of such an artificial edge.

• The image contains structures in the neighbourhood of your ROI that may influence the registration within your
ROI as in the lung example.

2.4. Registration Components 15

http://elastix.isi.uu.nl/download/elastix_manual_v4.7.pdf
http://elastix.isi.uu.nl/doxygen/index.html
http://elastix.isi.uu.nl/doxygen/index.html
http://elastix.isi.uu.nl/doxygen/parameter.html

SimpleElastix Documentation, Release 0.1

Masks can be used both for fixed and moving images. A fixed image mask is sufficient to focus the registration on a
ROI, since sample positions are drawn from the fixed image. You only want to use a mask for the moving image when
your moving image contains highly pertubed grey values near the ROI.

In case of multi-resolution registation you need to set (ErodeMask "true") if you do not want information from
the artificial edge to flow into you ROI during the smoothing step. If the edge around your ROI is meaningful, as in
the lung example where the edges of lungs needs to be aligned, you should set it to false, because the edge will help
to guide the registration.

2.4.3 Transforms

The choice of transform is essential for successful registration and, perhaps more importantly, what we perceive as
“successful”. The transform reflects the desired type of transformation and constrain the solution space to that type
of deformation. For example, in intra-subject applications it may be sufficent to consider only rigid transformations
if you are registering bones, while a cross-sectional study demands more flexible transformation models to allow for
normal anatomical variability between patients.

The number of parameters of the transform corresponds to the degrees of freedom (DOF) of the transformation. This
number varies greatly from 3 DOFs for 3D translation and 12 DOFs for 3D affine warping to anywhere between
hundreds and millions of DOFs for b-spline deformation fields and non-parametric methods.

The number of DOFs is equal to the dimensionality of the search space and directly proportional to the computational
complexity of the optimization problem. The computational complexity affects running time and likelihood of conver-
gence to an optimal solution. Notice that there is a distinction between convergence to an optimal solution and a good
registration result. If we use a 2D translation transform embedded in a multi-resolution approach, chances are we will
find the global optimal solution. That does not garuantee a good level of anatomical correspondence, however, which
will most likely require a more complex deformation model. On the other hand, registering complex anatomical struc-
tures using a b-spline deformation without proper initialization is most likely going to fail. Therefore it is often a good
idea to start with simple transforms and propagate solutions through transforms of gradually increasing complexity.

Some common transforms are (in order of increasing complexity) translation, rigid (rotation, translation), Euler (rota-
tion, translation), affine (rotation, translation, scaling, shearing), b-spline (non-rigid), Spline-Kernel Transform (non-
rigid) and weighted combinations of any of these.

In elastix, the transform is defined from the fixed image to the moving image. It may seem counter-intuitive that the
transform is defined in this direction, since it is the moving image we want to transform. Would it not be more logical
to map each pixel in the moving image to its new position in fixed image? Perhaps, but then two pixels from the
moving image might be mapped to the same pixel on the fixed grid and some pixels in the fixed image might not be
mapped to at all. The chosen convention allows us to iterate over the fixed image and pick a pixel from the moving
image for every pixel in the fixed image.

2.4.4 Metrics

The similarity metric measures the degree of similarity between the moving and fixed image and is a key component
in the registration process. The metric samples intensity values from the fixed and transformed moving image and
evaluates the fitness value and derivatives, which are passed to the optimizer.

Selecting an appropriate metric is highly dependent on the registration problem to be solved. For example, some
metrics have a large capture range while others require initialization close to the optimal position. In addition, some
metrics are only suitable for comparing images obtained from the same imaging modality, while others can handle
inter-modality comparisons. There are no clear-cut rules as to how to choose a metric and it may require a trial-and-
error process to find the best metric for a given problem.

The Mean Squared Difference (SSD) metric computes the mean squared pixel-wise intensity differences between the
fixed and moving images. The optimal value of the metric is zero. Poor matches are result in large values of the metric.
The metric samples intensity values from the fixed and transformed moving image and evaluates the fitness value and

16 Chapter 2. Introduction

SimpleElastix Documentation, Release 0.1

derivatives, which are passed to the optimizer. This metric relies on the assumption that intensity representing the
same homologous point must be the same in both images and only suited for two images with the same intensity
distributions, i.e. for images from the same modality.

Normalized Correlation Coefficient (NCC) computes pixel-wise cross-correlation normalized by the square root of
the autocorrelation of the images. The metric is invariant to linear differences between intensity distributions and is
therefore particularly well suited for intra-modal CT registration where intensity scales are always related by a linear
transform even between scanners. This metric produces a cost function with sharp peaks and well-defined minima,
but therefore has a relatively small capture radius.

The Mutual Information (MI) measure computes the mutual information between two images and is more general. MI
is a measure of how much information one random variable (image intensity in one image) tells about another random
variable (image intensity in the other image). This corresponds to measuring the dependency of the probability density
distributions (PDF) of the intensities of the fixed and moving images without having to specify the actual form of
the dependency. It is therefore well suited for multi-modal image pairs as well as mono-modal images. Normalized
Mutual Information is likewise suitable for both mono- and multi-modality registration. Some studies seem to indicate
better performance with NMI than MI in some cases.

Mattes Mutual Information is an implementation where the same pixels are sampled in every iteration. Using a fixed
set of discrete positions to evaluate the marginal and joint PDFs makes the path in search space more smooth.

The Kappa Similarity metric measures the overlap of segmented structures and is developed specifically to register
binary images (segmentations). In most cases however, it is better to convert the binary images to a distance map and
apply one of the usual metrics.

2.4.5 Optimizers

The optimizer estimates the optimal transform parameters in iterative fashion. Many optimizers are available in elastix
including Gradient Descent (GD), Robbins-Monroe (RM), Adaptive Stochastic Gradient Descent (ASGD), Conjugate
Gradient (CG), Conjugate Gradient FRPR, Quasi-Newton LBFGS, RSGD “Each parameter apart”, Simultaneous Per-
tubation (SP), CMAEvolutionStrategy and FullSearch which samples the entire search space. If you do not have any
immediate preferences, stick to the Adaptive Stochastic Gradient Descent (Klein 2009) which requires less parameters
to be set and tends to be more robust. For an elabore discussion see the elastix manual.

2.4.6 Samplers

The sampler is responsible for selecting locations in input images for the metric to evaluate. In general, it is sufficient
to evaluate only a subset of randomly sampled voxels. SimpleElastix comes with a grid, random, random coordinate
and full sampling strategies selected using the ImageSampler parameter.

The grid sampler defines a regular grid on the fixed image and selects the coordinates onthe grid. Effectively, the
image is down-sampledwithout smoothing. The size of the grid or downsampling factor is taken as input. The random
sampler randomly selects a user-specified number of voxels. Every voxel has equal chance to be selected and a sample
may be selected more than once. The random coordinate sampler is not limited to voxel positions but may sample
positions between voxels. The off-grid grey-level values are obtained via in interpolation.

2.4.7 Interpolators

The metric typically compares intensity values in the fixed image against the corresponding values in the transformed
moving image. When a point is mapped from one space to another by a transform, it will generally be mapped to a
non-grid position. Interpolation is required to evaluate the image intensity at the mapped off-grid position.

2.4. Registration Components 17

http://elastix.isi.uu.nl/download/elastix_manual_v4.7.pdf

SimpleElastix Documentation, Release 0.1

Several methods for interpolation exist, varying in quality and speed. The NearestNeighborInterpolator
returns the value of the spatially closest voxel. This technique is low in quality but require little resources. You will
want to use this method for binary images.

The LinearInterpolator returns a weighted average of surrounding voxels using distances as weights. In
elastix, this method is highly optimized and very fast. In general, you will probably want to use this method together
with the random coordinate sampler during the optimization process for best performance (in the time sense).

The BSplineInterpolator (or the more memory effecient BSplineInterpolatorFloat) interpolates
pixel values using b-spline approximations of user-defined order 𝑁 . First order b-splines corresponds to linear in-
tepolation in which case you might as well use the linear interpolator. To generate the final result image a higher-order
interpolation is usually required for which 𝑁 = 3 is recommended. The final interpolator is called a ResampleIn-
terpolator. Any one of the above methods can be used, but you need to prepend the name with Final, for example
FinalBSplineInterpolatorFloat

2.4.8 Images

As a final note in this section, it is important to know the appropriate definitions and terms when working with medical
images. In particular, information associated with physical spacing between pixels and position on the image grid with
respect to world coordinate system is extremely important. Improperly defined spacing and origins will most likely
result in inconsistent results. The main geometrical concepts associated with an image object are depicted in Figure 7.

Fig. 2: Figure 7: Geometrical concepts associated with the ITK image. Adopted from Ibanez et al. (2005).

Above,
cir-
cles
are
used
to
rep-
re-
sent
the
cen-
tre
of
pix-
els.
The
value
of
the
pixel
is
as-
sumed to be a Dirac Delta Function located at the pixel centre. Pixel spacing is measured between the pixel centres
and can be different along each dimension. The image origin is associated with the coordinates of the first pixel in the
image. A pixel is considered to be the rectangular region surrounding the pixel centre holding the data value.

In the next section we introduce the SimpleElastix Hello World example.

18 Chapter 2. Introduction

CHAPTER 3

Hello World

This example illustrates how to use SimpleElastix. With a single function call we can specify the fixed image, the
moving image and the type of registration you want to perform. SimpleElastix will then register our images using
sensible default parameters that work well in most cases. In later examples we shall see how to tweak the default
parameters, but for now we keep it simple.

3.1 Registration With Translation Transform

Say we want to register the following two brain MRIs.

19

SimpleElastix Documentation, Release 0.1

Figure 2. The original image fixedImage.nii (left) and translated image movingImage.nii
(right).

We identify that the objects are related by a simple spatial shift and that a translation transform should be sufficient to
align the objects. To correct the misalignment, we run the following lines of python code:

import SimpleITK as sitk

resultImage = sitk.Elastix(sitk.ReadImage("fixedImage.nii"), \
sitk.ReadImage("movingImage.nii"), \
"translation")

That’s it! We have effectively registered two images using a single line of code. Compare this to the ITK Hello World
example. We refer to this short-hand notation as the procedural interface (some people also refer to it as the functional
interface) because it consists of functions that accomplish a specific task. The procedural interface is less flexible than
the object-oriented interface introduced below, but it is very simple to use. Let’s break down what goes on under the
hood of this single function call.

First of all, import SimpleITK as sitk loads the SimpleITK module from which SimpleElastix is accessed.
This assumes that SimpleElastix has been compiled and installed on your machine.

sitk.ReadImage() is the generic image file reader of SimpleITK which loads an image from disk and pass a
SimpleITK image object to SimpleElastix. You can also apply a SimpleITK filter to an image before passing them
to SimpleElastix. For example, you could use the ResampleImageFilter() to downsample images that would
otherwise consume too much memory during registration.

The final parameter "translation" specifies the desired type of registration. In the Parameter Maps section we
will take a close look at parameter maps and examine what happens when you specify this parameter. It is obvious
from the figure below that a translation transform is sufficient to align these images.

20 Chapter 3. Hello World

https://github.com/InsightSoftwareConsortium/ITK/blob/master/Examples/RegistrationITKv4/DeformableRegistration1.cxx
https://github.com/InsightSoftwareConsortium/ITK/blob/master/Examples/RegistrationITKv4/DeformableRegistration1.cxx

SimpleElastix Documentation, Release 0.1

Figure 3. Mean image before registration (left) and mean image after registration (right). The fixed image
is shown the red color channel and the moving image is shown in the blue color channel.

3.2 Object-Oriented Interface

The example above used procedural interface. While the procedural interface may be useful for rapid prototyping,
it trades off flexibility for code simplicity. For example, the final deformation field cannot be retrived and applied
to another image. This is a problem if we want to subsequently warp other images, e.g. a label image, using the
same transformation. Further, image quality is reduced from resampling the resulting image twice. To this end,
SimpleElastix comes with a more flexible object-oriented interface suitable for more advanced use cases and scripting
purposes. In the next example, we perform the same registration as above, but this time using the object oriented
interface:

3.2. Object-Oriented Interface 21

SimpleElastix Documentation, Release 0.1

import SimpleITK as sitk

fixedImage = sitk.ReadImage('fixedImage.nii')
movingImage = sitk.ReadImage('movingImage.nii')
parameterMap = sitk.GetDefaultParameterMap('translation')

elastixImageFilter = sitk.ElastixImageFilter()
elastixImageFilter.SetFixedImage(fixedImage)
elastixImageFilter.SetMovingImage(movingImage)
elastixImageFilter.SetParameterMap(parameterMap)
elastixImageFilter.Execute()

resultImage = elastixImageFilter.GetResultImage()
transformParameterMap = elastixImageFilter.GetTransformParameterMap()

This is more verbose but also a lot more powerful. We can now warp an entire population of images (e.g. binary label
images for segmentation of different brain regions) using the same parameter map and a single instance of transformix:

transformixImageFilter = sitk.TransformixImageFilter()
transformixImageFilter.SetTransformParameterMap(transformParameterMap)

population = ['image1.hdr', 'image2.hdr', ... , 'imageN.hdr']

for filename in population:
transformixImageFilter.SetMovingImage(sitk.ReadImage(filename))
transformixImageFilter.Execute()
sitk.WriteImage(transformixImageFilter.GetResultImage(), "result_"+filename)

The object-oriented interface facilitates reuse of components and dramatically simplifies book-keeping and boilerplate
code. We will use the object-oriented interface in the documentation from this point forward.

In the next section, we will take a closer look at the parameter map interface that configures the registration compo-
nents.

22 Chapter 3. Hello World

CHAPTER 4

Parameter Maps

In the previous section we saw how to configure an entire multi-resolution registration process with a single parameter.
Here, we will examine how SimpleElastix configures registration components internally. Knowing the internal mech-
anisms is not strictly necessary to register simple anatomical structures, but it will help you solve complex problems
that require problem-specific tuning.

Elastix introduces the concept of a parameter map to configure the registration procedure. A parameter map is a
collection of key-value pairs that atomically defines the components of the registration and any settings they might
require. Only input images and output options need to be specified seperately. Elastix will read a given parameter map
and load the specified components at runtime.

The original elastix and transformix command line programs read text files from disk in which parameters are specified
according to the following format:

(ParameterName ParameterValue)

The parameter may be either single- or vector-valued. If the value is of type string then the value will be quoted:

(ParameterName "value1" ... "valueN")

If the value is of numerical type it will be unquoted:

(ParameterName 123)

SimpleElastix can read these types of files as well but further introduces native data objects for parameter files in
all target languages. This means that instead of editing text files you can programmatically configure registration
components. For example, we could initialize a parameter object and start populating it with values:

import SimpleITK as sitk

p = sitk.ParameterMap()
p['Registration'] = ['MultiResolutionRegistration']
p['Transform'] = ['TranslationTransform']
...

and so on. ElastixImageFilter has default settings that allows us to get started right away.

23

SimpleElastix Documentation, Release 0.1

4.1 The Default Parameter Maps

In the Hello World example we obtained a registered image by running

resultImage = sitk.Elastix(sitk.ReadImage('fixedImage.nii'), \
sitk.ReadImage('movingImage.nii'), \
'translation')

Internally, ElastixImageFilter uses a pre-configured parameter map to register images. The parameter map is ob-
tained by an internal call to sitk.GetDefaultParameterFile('translation'). This function provides
parameter maps for rigid, affine, non-rigid and groupwise registration methods (in order of increasing complexity).

Tip: ElastixImageFilter will register our images with a translation -> affine -> b-spline multi-
resolution approach by default. We simply leave out the call to SetParameterMap to achieve this functionality.

import SimpleITK as sitk

Functional interface
resultImage = sitk.Elastix(sitk.ReadImage('fixedImage.nii'), sitk.ReadImage(
→˓'movingImage.nii'))

Object oritented interface
elastixImageFilter = sitk.ElastixImageFilter()
elastixImageFilter.SetFixedImage(sitk.ReadImage('fixedImage.nii'))
elastixImageFilter.SetMovingImage(sitk.ReadImage('movingImage.nii'))
resultImage = elastixImageFilter.Execute()

We can also retrieve the parameter map ourselves and reconfigure it before passing it back to ElastixImageFilter,
allowing us to quickly optimize a registration method for a particular problem:

parameterMap = sitk.GetDefaultParameterMap('translation')

Use a non-rigid transform instead of a translation transform
parameterMap['Transform'] = ['BSplineTransform']

Because of the increased complexity of the b-spline transform,
it is a good idea to run the registration a little longer to
ensure convergence
parameterMap['MaximumNumberOfIterations'] = ['512']

resultImage = sitk.Elastix(sitk.ReadImage('fixedImage.nii'), \
sitk.ReadImage('movingImage.nii'), \
parameterMap)

Tip: We can print parameter maps to console like this:

import SimpleITK as sitk
elastixImageFilter = sitk.ElastixImageFilter()
elastixImageFilter.PrintParameterMap()

We will study other parameter maps more closely in later examples. For now, we simply print the translation parameter
map to console and examine its contents.

24 Chapter 4. Parameter Maps

SimpleElastix Documentation, Release 0.1

>>> sitk.PrintParameterMap(sitk.GetDefaultParameterMap("translation"))
ParameterMap 0:

(AutomaticParameterEstimation "true")
(CheckNumberOfSamples "true")
(DefaultPixelValue 0)
(FinalBSplineInterpolationOrder 2)
(FixedImagePyramid "FixedSmoothingImagePyramid")
(FixedImagePyramidSchedule 8 8 8 4 4 4 2 2 2 1 1 1)
(ImageSampler "RandomCoordinate")
(Interpolator "LinearInterpolator")
(MaximumNumberOfIterations 32)
(MaximumNumberOfSamplingAttempts 8)
(Metric "AdvancedMattesMutualInformation")
(MovingImagePyramid "MovingSmoothingImagePyramid")
(MovingImagePyramidSchedule 8 8 8 4 4 4 2 2 2 1 1 1)
(NewSamplesEveryIteration "true")
(NumberOfResolutions 4)
(NumberOfSamplesForExactGradient 4096)
(NumberOfSpatialSamples 4096)
(Optimizer "AdaptiveStochasticGradientDescent")
(Registration "MultiResolutionRegistration")
(ResampleInterpolator "FinalBSplineInterpolator")
(Resampler "DefaultResampler")
(Transform "TranslationTransform")
(WriteResultImage "true")

The first thing to note is that the parameter map is enumerated. ElastixImageFilter can take a vector of parameter
maps and apply the corresponding registrations sequentially. The resulting transform is called a composite transform
since the final transformation is a composition of sequentially applied deformation fields. For example, a non-rigid
registration is often initialized with an affine transformation (translation, scale, rotation, shearing) to bring the objects
into rough alignment. This makes the registration less suscetible to local minima. We can also ask SimpleElastix to
add the individual deformation fields and apply them in one go (but make sure you know what you are doing before
opting for this apprach).

Tip: We can add mulitple parameter maps to SimpleElastix like this:

import SimpleITK as sitk
elastixImageFilter = sitk.ElastixImageFilter()
elastixImageFilter.SetParameterMap(sitk.GetDefaultParameterMap('translation'))
elastixImageFilter.AddParameterMap(sitk.GetDefaultParameterMap('affine'))

Note that the first call is a Set method. This deletes any prevously set parameter maps. Subsequent calls to
AddParameterMap appends parameter maps to the internal list of parameter maps

Let’s examine the parameters above in detail.

4.2 Important Parameters

Registration is the top-level parameter which in this case has been set to
MultiResolutionRegistration. A multi-resolution pyramid strategy improves the capture range and
robustness of the registration. We will almost always want to use multiple resolutions unless your problem is partic-
ularly simple. The basic idea is to first estimate T(x) on a low resolution version of the images and then propagate
the estimated deformation to higher resolutions. This makes the registration initially focus on larger structures (the

4.2. Important Parameters 25

SimpleElastix Documentation, Release 0.1

skull and brain hemispheres etc), before focusing on high-frequency information (brain subregions etc) which contain
more local minima. FixedImagePyramid, FixedImagePyramidSchedule, MovingImagePyramid,
MovingImagePyramidSchedule, and NumberOfResolutions controls the pyramid strategy.

The Transform parameter is set to TranslationTransform which it is optimized with an
AdaptiveStochasticGradientDescent optimizer (Klein et al. 2009). SimpleElastix will use this op-
timizer together with the AdvancedMattesMutualInformation metric by default since this combination
work well for a broad range of problems whether mono-modal or multi-modal.

Image intensities are sampled using an ImageSampler, Interpolator and ResampleInterpolator. The
sampler is responsible for selecting points in the image to sample. The RandomCoordinate simply selects
random positions. The interpolator is responsible for interpolating off-grid posititions during optimization. The
LinearInterpolator used here is very fast and uses very little memory.

A BSplineInterpolator of order 2 is used to resample the result image from the moving image once the final
transformation has been found. This is a one-time step so the additional computational complexity is worth the trade-
off for higher image quality.

Another important parameter is AutomaticParameterEstimation which controls whether the
AdaptiveStochasticGradientDescent optimizer should estimate its own convergence parameters or
allow you to set them. Automatically obtained parameters work well in most cases and facilitates a complete
hands-off approach which is highly recommended. Optimizers can be tricky to tune by hand.

DefaultPixelValue sets value of pixels outside the moving image grid. The rest of the key-value pairs are
component specific parameters. There are multiple choices available for each type of component. For example, you
can construct an image pyramid with recursive sampling or via Gaussian Smoothing. Each choice has its own pros
and cons. Consult the Registration Components secton for a description of all types of available components.

26 Chapter 4. Parameter Maps

CHAPTER 5

Rigid Registration

A rigid transform can register objects that are related by rotation and translation. For example, if you are registering
images of a patient’s bones, you can often assume that a rigid transform is sufficient to align these structures. In fact,
it is often advantageus to chose a simple transform if problems that allows it, as this constrains the solution space and
ensures no spurious non-rigid local minima affect your results. Think of it as a way of embedding expert knowledge
in the registration procedure.

Tip: Rigid registration is one of the simplest of methods in the catagory of linear transformation models and is often
used as initialization for affine- and non-rigid transforms.

The rigid transform is selected using (Transform "EulerTransform"). Consider the images in Figure 8.

27

SimpleElastix Documentation, Release 0.1

Figure 8. The original image fixedImage.nii (left) and translated and rotated image
movingImage.nii (right).

The image on right has been rotated 10 degrees and translated 13 pixels in the x-direction and 17 pixels in the y-
direction. Using the EulerTransform we may correct for this misalignment.

import SimpleITK as sitk

elastixImageFilter = sitk.ElastixImageFilter()
elastixImageFilter.SetFixedImage(sitk.ReadImage("fixedImage.nii"))
elastixImageFilter.SetMovingImage(sitk.ReadImage("movingImage.nii"))
elastixImageFilter.SetParameterMap(sitk.GetDefaultParameterMap("rigid"))
elastixImageFilter.Execute()
sitk.WriteImage(elastixImageFilter.GetResultImage())

It is clear from the result mean image on right in Fig. 9 that registration was successful.

28 Chapter 5. Rigid Registration

SimpleElastix Documentation, Release 0.1

Figure 9. Mean image before registration (left) and mean image after registration (right).

In the next example we will introduce scaling and shearing into the registration.

29

SimpleElastix Documentation, Release 0.1

30 Chapter 5. Rigid Registration

CHAPTER 6

Affine Registration

The affine transform allows for shearing and scaling in addition to the rotation and translation. This is usually a good
choice of transform for initialization of non-rigid transforms like the B-Spline transform. The affine transform is
selected using sitk.GetDefaultParameterMap("affine").

Consider the images in Figure 10.

31

SimpleElastix Documentation, Release 0.1

Figure 10. The original image fixedImage.nii (left) and translated and rotated image
movingImage.nii (right).

The image on the right has been sheared, scaled 1.2x, rotated 10 degrees and translated 13 pixels in the x-direction
and 17 pixels in the y-direction. Using the AdvancedAffineTransform we may correct for this misalignment.

import SimpleITK as sitk

elastixImageFilter = sitk.ElastixImageFilter()
elastixImageFilter.SetFixedImage(sitk.ReadImage("fixedImage.nii")
elastixImageFilter.SetMovingImage(sitk.ReadImage("movingImage.nii")
elastixImageFilter.SetParameterMap(sitk.GetDefaultParameterMap("affine"))
elastixImageFilter.Execute()
sitk.WriteImage(elastixImageFilter.GetResultImage())

It is clear from the result mean image on right in Fig. 11 that registration was successful.

32 Chapter 6. Affine Registration

SimpleElastix Documentation, Release 0.1

Figure 11. Mean image before registration (left) and mean image after registration (right).

Notice that the only difference from the previous example is the requested parameter map. In fact, only the Transform
parameter seperates the two parameter maps. The following parameter map is equivalent to the one used above:

import SimpleITK as sitk

parameterMap = sitk.GetDefaultParameterMap("rigid")
parameterMap["Transform"] = ["AffineTransform"]

You can inspect the default parameter maps in the elastix repository to convince yourself.

This demonstrates how easy it is to try out different registration components with SimpleElastix. In the next example
we will introduce non-rigid registration and initialize the moving image with an affine transform.

33

https://github.com/SuperElastix/elastix/blob/522843d90ff586be051c480514cd14a88db45dbf/src/Core/Main/elxParameterObject.cxx#L260-L362

SimpleElastix Documentation, Release 0.1

34 Chapter 6. Affine Registration

CHAPTER 7

Non-rigid Registration

Non-rigid registration methods are capable of aligning images where correspondence cannot be achieved without
localized deformations and can therefore better accomodate anatomical, physiological and pathological variability
between patients.

B-splines are often used to parameterize a free-form deformation (FFD) field. This is a much harder registration
problem than any of the previous examples due to a much higher-dimensional parameter space and we are therefore
best off using a multi-resolution approach with affine initialization. This is very easy to do in SimpleElastix.

Consider the following mean image of two different subjects.

The following code runs multi-resolution affine initialization and starts a non-rigid method multi-resolution non-rigid
method using the affine transform as initialization :

import SimpleITK as sitk

elastixImageFilter = sitk.ElastixImageFilter()
elastixImageFilter.SetFixedImage(sitk.ReadImage("fixedImage.nii"))
elastixImageFilter.SetMovingImage(sitk.ReadImage("movingImage.nii"))

parameterMapVector = sitk.VectorOfParameterMap()
parameterMapVector.append(sitk.GetDefaultParameterMap("affine"))
parameterMapVector.append(sitk.GetDefaultParameterMap("bspline"))
elastixImageFilter.SetParameterMap(parameterMapVector)

elastixImageFilter.Execute()
sitk.WriteImage(elastixImageFilter.GetResultImage())

The result image is seen below.

In this case, we are able to compensate for many non-rigid differences between the two images. Note, however, that
brain image registration is a difficult to task because of complex anatomical variations. Entire registration packages
are dedicated to brain image processing. You might want to consider a more refined approach in critical applications.

In the next section we introduce groupwise registration, where many images are registered simultaneously a mean
frame of reference.

35

http://freesurfer.net/

SimpleElastix Documentation, Release 0.1

Fig. 1: Figure 13: Mean original image.

36 Chapter 7. Non-rigid Registration

SimpleElastix Documentation, Release 0.1

Fig. 2: Figure 14: Mean result image.

37

SimpleElastix Documentation, Release 0.1

38 Chapter 7. Non-rigid Registration

CHAPTER 8

Groupwise Registration

Groupwise registration methods try to mitigate uncertainties associated with any one image by simultaneously regis-
tering all images in a population. This incorporates all image information in registration process and eliminates bias
towards a chosen reference frame. The method described here uses a 3D (2D+time) and 4D (3D+time) free-form
B-spline deformation model and a similarity metric that minimizes variance of intensities under the constraint that the
average deformation over images is zero. This constraint defines a true mean frame of reference that lie in the center
of the population without having to calculate it explicitly.

The method can take into account temporal smoothness of the deformations and a cyclic transform in the time dimen-
sion. This may be appropriate if it is known a priori that the anatomical motion has a cyclic nature e.g. in cases of
cardiac or respiratory motion.

Note that brain registration is a difficult to task because of complex anatomical variations and almost a scientific topic
in itself. Entire registration packages are dedicated to just brain image processing. In this section we are less strict
with the end result and focus on illustrating the groupwise registration method in SimpleElastix.

Consider the following mean image:

Elastix takes a single N+1 dimensional image for groupwise registration. Therefore we need to first concatenate
the images along the higher dimension. SimpleITK makes this very easy with the JoinSeries image filter. The
registration step is business as usual:

import SimpleITK as sitk

Concatenate the ND images into one (N+1)D image
population = ['image1.hdr', ..., 'imageN.hdr']
vectorOfImages = sitk.VectorOfImage()

for filename in population:
vectorOfImages.push_back(sitk.ReadImage(filename))

image = sitk.JoinSeries(vectorOfImages)

Register
elastixImageFilter = sitk.ElastixImageFilter()
elastixImageFilter.SetFixedImage(image)

(continues on next page)

39

http://freesurfer.net/

SimpleElastix Documentation, Release 0.1

Fig. 1: Figure 12: Mean original image.

40 Chapter 8. Groupwise Registration

SimpleElastix Documentation, Release 0.1

(continued from previous page)

elastixImageFilter.SetMovingImage(image)
elastixImageFilter.SetParameterMap(sitk.GetDefaultParameterMap('groupwise'))
elastixImageFilter.Execute()

While the groupwise transform works only on the moving image we need to pass a dummy fixed image is to prevent
elastix from throwing errors. This does not consume extra memory as only pointers are passed internally.

The result image is shown in Figure 13. It is clear that anatomical correpondence is obtained in many regions of the
brain. However, there are a some anatomical regions that have not been registered correctly, particularly near Corpus
Collosum. Generally these kinds of difficult registration problems require a lot of parameter tuning. No way around
that. In a later chapter we introduce methods for assessment of registration quality.

Fig. 2: Figure 13: Mean result image.

Tip: We can use the JoinSeries() SimpleITK method to construct a 4D image from multiple 3D images and the
Extract() SimpleITK method to pick out a 3D image from a result 4D image.

Note that the JoinSeries method may throw an error “Inputs do not occupy the same physi-
cal space!” if image information is not perfectly aligned. These can be caused by slight differ-
ences between the image origins, spacing, or axes. The tolerance that SimpleITK uses for these
settings can be adjusted using :code: sitk.ProcessObject.SetGlobalDefaultDirectionTolerance(x) and :code:
sitk.ProcessObject.SetGlobalDefaultCoordinateTolerance(x). We may need to change the image origins to make
sure they are the same. This can be done by copying the origin of one of the images origin = firstImage.

41

SimpleElastix Documentation, Release 0.1

GetOrigin() and setting it to the others otherImages.SetOrigin(origin)

42 Chapter 8. Groupwise Registration

CHAPTER 9

Point-based Registation

Point-based registration allows us to help the registration via pre-defined sets of corresponding points. The
CorrespondingPointsEuclideanDistanceMetricminimises the distance of between a points on the fixed
image and corresponding points on the moving image. The metric can be used to help in a difficult registration task
by taking into account positions are known to correspond. Think of it as a way of embedding expert knowledge in
the registration procedure. We can manually select points or automatically them via centroids of segmentations for
example. Anything is possible.

To use CorrespondingPointsEuclideanDistanceMetric we append it to the list of metrics in the param-
eter map.

import SimpleITK as sitk

parameterMap = sitk.GetDefaultParameterMap("bspline")
parameterMap["Metric"].append("CorrespondingPointsEuclideanDistanceMetric")

Note: The CorrespondingPointsEuclideanDistanceMetric metric must be specified as the last metric
due to technical constraints in elastix.

The metric can also be added to all metrics in the ElastixImageFilter object with a single call.

import SimpleITK as sitk

elastixImageFilter = sitk.ElastixImageFilter()
elastixImageFilter.AddParameter("Metric", "CorrespondingPointsEuclideanDistanceMetric
→˓")

Or to a single parameter map (here we assume that SimpleElastix contains at least two parameter maps)

elastixImageFilter.AddParameter(1, "Metric",
→˓"CorrespondingPointsEuclideanDistanceMetric")

The point set are specified as text files. They can either be in VTK pointdata legacy format or elastix’ own format that
usually has the pts extension.

43

http://dunne.uni-hd.de/VisuSimple/documents/vtkfileformat.html#pointdata

SimpleElastix Documentation, Release 0.1

<index, point>
<number of points>
point1 x point1 y [point1 z]
point2 x point2 y [point2 z]

index is used when points are specified in pixel coordinates. point is used when the points are specified in world
coordinates. For example, this is a valid point file:

point
3
102.8 -33.4 57.0
178.1 -10.9 14.5
180.4 -18.1 78.9

9.1 Transforming Point Sets

We can apply a transformation computed with SimpleElastix to a point set with SimpleTransformix.

import SimpleITK as sitk

fixedImage = sitk.ReadImage("fixedImage.nii")
movingImage = sitk.ReadImage("movingImage.nii")

Compute the transformation
elastixImageFilter = sitk.ElastixImageFilter()
elastixImageFilter.SetFixedImage(fixedImage)
elastixImageFilter.SetMovingImage(movingImage)
elastixImageFilter.Execute()

Warp point set. The transformed points will be written to a file named
outputpoints.txt in the output directory determined by SetOutputDirectory()
(defaults to working directory). The moving image is needed for transformix
to correctly infer the dimensionality of the point set.
transformixImageFilter = sitk.TransformixImageFilter()
transformixImageFilter.SetTransformParameterMap(elastixImageFilter.
→˓GetTransformParameterMap())
transformixImageFilter.SetFixedPointSetFileName("fixedPointSet.pts")
transformixImageFilter.Execute()

Warning: The input points are specified in the fixed image domain (!) and warped from the fixed image to
moving image since the transformation direction is from fixed to moving image. If we want to warp points from
the moving image to fixed image, we need the inverse transform. This can be computed manually (see section
6.1.6 in the elastix manual) or via elastixImageFilter.ExecuteInverse().

44 Chapter 9. Point-based Registation

http://elastix.isi.uu.nl/download/elastix_manual_v4.8.pdf

CHAPTER 10

Acknowledgements

SimpleElastix is developed and maintained by Kasper Marstal. Elastix is developed and maintained by Stefan Klein,
Erasmus Medical Center, Rotterdam, Netherlands, and Marius Staring, Leiden University Medical Center, Leiden,
Netherlands. SimpleITK is developed and maintained by Bradley Lowekamp and fellow Kitware developers.

The reader is refered to the elastix manual for a technical discussion of individual algorithms.

45

https://github.com/kaspermarstal/SimpleElastx
https://kaspermarstal.github.io/
http://elastix.bigr.nl
https://github.com/SimpleITK/SimpleITK
http://elastix.isi.uu.nl/download/elastix_manual_v4.7.pdf

	Getting Started
	Compiling On Linux
	Compiling On Mac OS X
	Compiling On Windows
	Manually Building On Linux
	Troubleshooting
	Contribute

	Introduction
	Image Registration
	SimpleElastix
	Mathematical Background
	Registration Components

	Hello World
	Registration With Translation Transform
	Object-Oriented Interface

	Parameter Maps
	The Default Parameter Maps
	Important Parameters

	Rigid Registration
	Affine Registration
	Non-rigid Registration
	Groupwise Registration
	Point-based Registation
	Transforming Point Sets

	Acknowledgements

